Kvadratsætningerne

Kvadratet på en toleddet størrelse er kvadratet på første led plus kvadratet på andet led plus/minus det dobbelte produkt. $${(a+b)^2=a^2+b^2+2ab}$$ $${(a-b)^2=a^2+b^2-2ab}$$

To tals sum gange de samme to tals differens er kvadratet på første led minus kvadratet på andet led. $${(a+b)(a-b)=a^2-b^2}$$


Potens

$${a^n}$$ a kaldes grundtallet, n kaldes eksponenten.

Rod

$${\sqrt[n]{b}=a}$$ n kaldes rodeksponenten, b kaldes radikanden.


Rod og potens er modsatte regnearter.

Regneregler for potenser

$${a^n\cdot b^n=(a\cdot b)^n}$$ $${a^n\cdot a^m=a^{n+m}}$$ $${(a^n)^m=a^{n\cdot m}}$$ $${a^n: a^m=a^{n-m}}$$ $${a^{-n}=\frac{1}{a^n}}$$


Logaritmer

Definition

$${x=10^{log(x)}}$$

1. logaritme-regneregel

$${log(a\cdot b)=log(a)+log(b)}$$

2. logaritme-regneregel

$${log{\left(\frac{a}{b}\right)}=log(a)-log(b)}$$

3. logaritme-regneregel

$${log(a^n)=n\cdot log(a)}$$